Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
mBio ; : e0337721, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1637923

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.

2.
J Proteomics ; 248: 104354, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1364279

ABSTRACT

Porcine rotavirus (PoRV), particularly group A, is one of the most important swine pathogens, causing substantial economic losses in the animal husbandry industry. To improve understanding of host responses to PoRV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially expressed proteins in PoRV-infected IPEC-J2 cells and confirmed the differentially accumulated proteins (DAPs) expression differences by performing RT-qPCR and Western blot analysis. Herein, in PoRV- and mock-infected IPEC-J2 cells, relative quantitative data were identified for 4724 proteins, 223 of which were DAPs (125 up-accumulated and 98 down-accumulated). Bioinformatics analyses further revealed that a majority of the DAPs are involved in numerous crucial biological processes and signaling pathways, such as metabolic process, immune system process, amino acid metabolism, energy metabolism, immune system, MHC class I peptide loading complex, Hippo signaling pathway, Th1 and Th2 cell differentiation, antigen processing and presentation, and tubule bicarbonate reclamation. The cellular localization prediction analysis indicated that these DAPs may be located in the Golgi apparatus, nucleus, peroxisomal, cytoplasm, mitochondria, extracellular, plasma membrane, and endoplasmic reticulum (ER). Expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) or two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, were further validated by RT-qPCR and Western blot analysis. Collectively, this work is the first time to investigate the protein profile of PoRV-infected IPEC-J2 cells using quantitative proteomics; these findings provide valuable information to better understand the mechanisms underlying the host responses to PoRV infection in piglets. SIGNIFICANCE: The proteomics analysis of this study uncovered the target associated with PoRV-induced innate immune response or cellular damage, and provided relevant insights into the molecular functions, biological processes, and signaling pathway in these targets. Out of these 223 DAPs, the expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) and two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, have been further validated using RT-qPCR and Western blot analysis. These outcomes could uncover how PoRV manipulated the cellular machinery, which could further our understanding of PoRV pathogenesis in piglets.


Subject(s)
Proteome , Rotavirus , Animals , Cell Line , Chromatography, Liquid , Epithelial Cells , Swine , Tandem Mass Spectrometry
3.
bioRxiv ; 2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-808504

ABSTRACT

Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL